

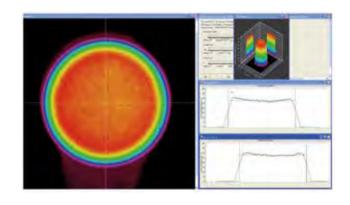
577 nm FIBER TECHNOLOGY LASER

Peripheral and Macular Photocoagulation

Easyret° is a fully integrated **577 nm yellow photocoagulator** based on a **technological breakthrough: fiber laser technology.** Available with Haag Streit or Zeiss type slit lamps, it offers a large choice of treatment settings well adapted to the treatment of macular and peripheral retinal pathologies.

EASYRET®:

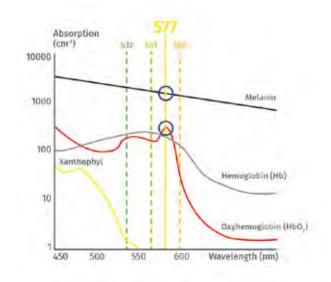
YELLOW FIBER LASER, FEATURING MULTISPOT AND SUBLIMINAL® TECHNOLOGIES

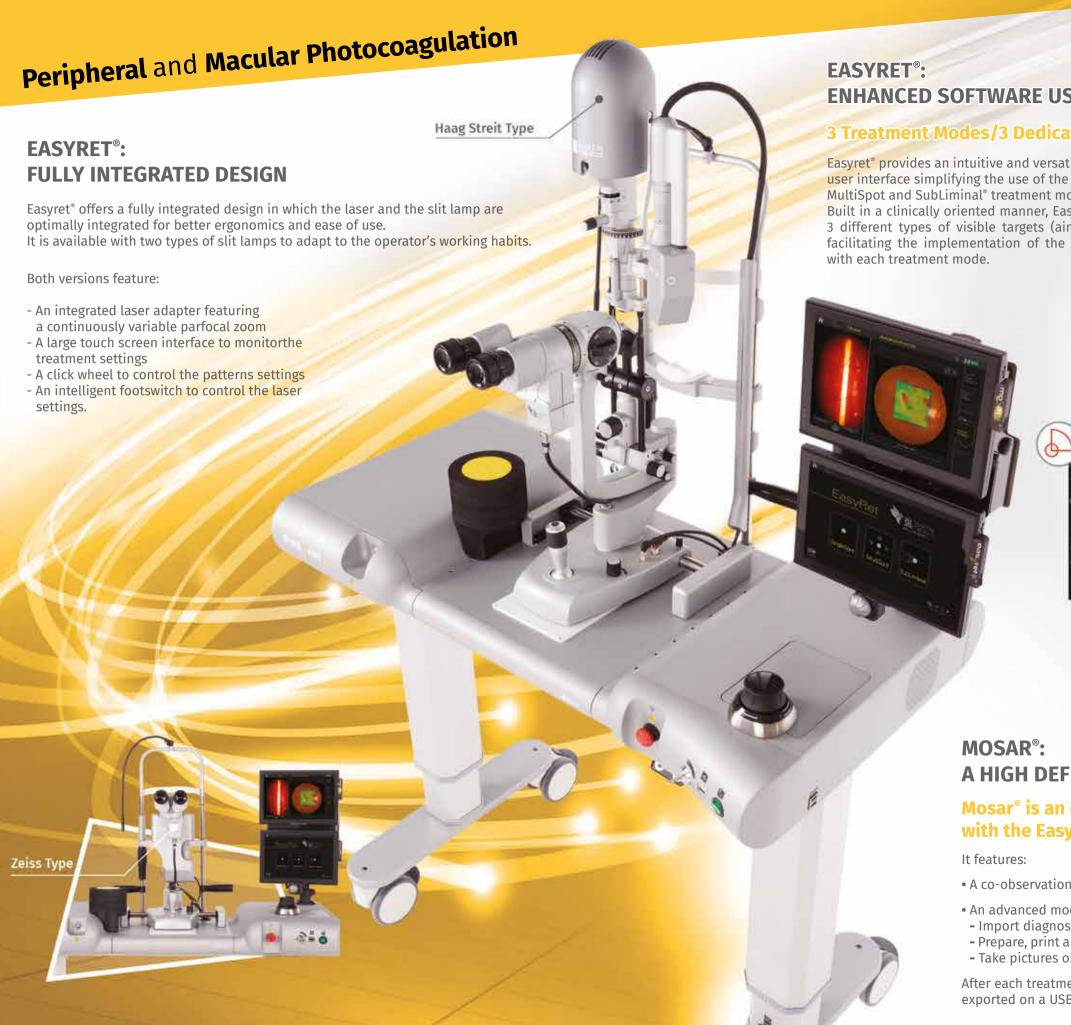

Fiber Laser Technology:

Stemming from the ELBA™ technology, developed and successfully marketed by Quantel Laser for various applications, this new generation of laser cavity provides unique advantages:

- An excellent beam quality ensuring a homogeneous laser spot profile (top hat)
- The emission of pure 577 nm yellow wavelength
- An extended lifetime thanks to a simple, compact and reliable technology.

The fiber laser technology is a variation of the standard solidstate laser technology.


In fiber lasers, the lasing medium is composed of an optical fiber doped with rare earth elements and optically pumped by diodes.



Yellow Laser - 577 nm Wavelength:

Presented as the most versatile wavelength in the scientific literature, the 577 nm wavelength offers the following benefits:

- Excellent combined absorption by both melanin and oxyhemoglobin (peak absorption of oxyhemoglobin) [1,2]
- Very little absorption by macular xanthophyll pigments [1,2]
- Excellent penetration through cataracts and hazy media [1,2].
- 1- Vogel M, Schäfer FP, Stuke M, Müller K, Theuring S, Morawietz A.
 Animal, experiments for the determination of an optimal wavelength for retinal coagulations.
 Graefes Arch Clin Exp Ophthalmol. 1989;227:277-280.
- 2- Mainster MA. Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology.1986:93:952-958.

ENHANCED SOFTWARE USER INTERFACE

3 Treatment Modes/3 Dedicated Targets:

Easyret® provides an intuitive and versatile software user interface simplifying the use of the SingleSpot, MultiSpot and SubLiminal® treatment modes. Built in a clinically oriented manner, Easyret® offers 3 different types of visible targets (aiming beam) facilitating the implementation of the laser spots

MultiSpot Mode

A HIGH DEFINITION IMAGING SYSTEM FOR EASYRET®

Mosar® is an optional camera/video imaging system compatible with the Easyret® laser.

- A co-observation teaching mode for live viewing of laser procedures
- An advanced mode allowing the operator to:
- Import diagnosis images facilitating the laser treatment planning
- Prepare, print and record advanced treatment reports including fundus and diagnosis images
- Take pictures or record treatment videos for presentation and training purposes.

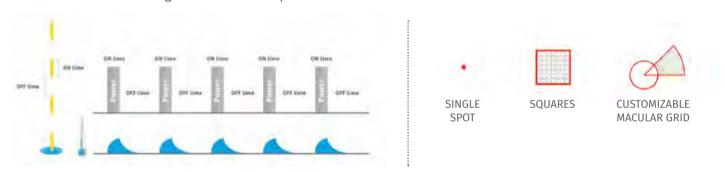
After each treatment all the generated images, videos and treatment reports can be saved and exported on a USB drive or a local network.

MultiSpot Technology:

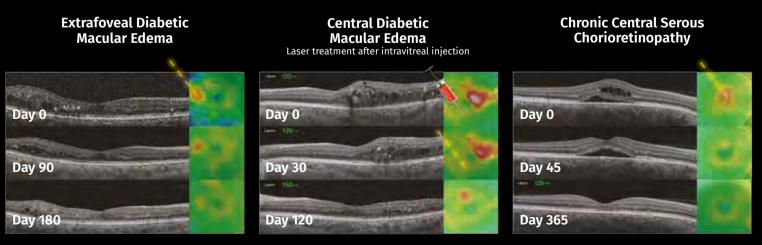
Characterized by the use of short pulse durations from 10 to 20 ms, this technology offers many advantages over classical treatments:

- Less heat diffusion to the retina and choroid, less damage to the retinal nerve fiber layer [3,4]
- Comfortable treatment better tolerated by patients [5]
- Treatment time reduction (full PRP in 1 session) [6].

It can be delivered through 4 customizable patterns for better adaptation to the treatment site.



MultiSpot Panphotocoagulation


Image courtesy of Alejondro Filloy Ruis, MD, Ph.D.
Tarragona, Spain

SubLiminal® Technology:

Composed of a train of extremely short microsecond pulses, this subthreshold treatment mode (non-visible laser impacts) allows the operator to fully adjust the pulse duration (On Time) and interval (Off Time). This fined-tuned control of the laser treatment settings ensures a precise management of the thermal effect on the targeted tissues. It can be delivered through 3 customizable patterns:

Studies using this tissue sparing treatment mode avoiding scarring [7,8] have reports successful outcomes for diabetic macular edema [7] and central serous chorioretinopathy [8].

TECHNICAL SPECIFICATIONS

EASYRET SPECIFICATIONS

Laser source: fiber laser technology

Wavelength: yellow 577 nm Power at tissue up to: 2000 mW

Pulse duration: 10 ms to continuous Single spot modes: single, repeat, painting, continuous

SubLiminal® mode: train of microsecond pulses

adjustable duty cycle: 5% to 100% available in MultiSpot and

SubLiminal® modes

Pattern:

Resume® function:

MultiSpot mode: single spot, squares, circles, triple arc,

macular grid

SubLiminal® mode: single spot, squares, customizable

macular grid

Spot size:

Single spot: continuously variable from 50 um to 400 um Pattern:

continuously variable from 100 µm to 400 µm

Integrated slit lamps:

Haag Streit type: Quantel Medical (CSO 9900 5x) Zeiss type: Ouantel Medical (CSO 9800 5x)

Aiming beam: 635 - 650 nm

174.2 (H) x 97 (W) x 72 (D) cm Size:

68.58" (H) x 38.19" (W) x 28.35" (D)

Weight: 60 kg - 132 lbs

by Peltier effect Cooling:

Power requirements: 100 to 240 VAC, 250 VA, 50/60 Hz

OPTIONAL FEATURES

Single column stand or Twin column stand

Easyret® with LIO port

Laser indirect ophthalmoscope Keeler Vantage Plus

Specifications are subject to change without notice.

°2019. Quantel Medical, Easyret and Resume Function are registered trademarks of Quantel Medical. Elba is a trademark of Quantel. All rights reserved.

MOSAR SPECIFICATIONS

Camera:

Image resolution: 1280 x 720 pixels Compatibility: Easyret® laser Camera position: left or right eye

Computer and screen:

Connected on Easyret® screen arm Touchscreen size: 10 1" Storage: SSD 256 GB Connectivity: USB and Ethernet Power supply: 12 VDC / 5A

BIBLIOGRAPHY

3- Jain A, Blumenkranz MS, Paulus Y et al. Effect of pulse duration on size and character of the lesion in retinal photocoagulation.

Árch Ophthalmol. 2008; 126:78-85.

Yi-Ryeung Park, Donghyun Jee.

Changes in Peripapillary Retinal Nerve Fiber Layer Thickness after Pattern Scanning Laser Photocoagulation in Patients with Diabetic Retinopathy. Korean J Ophthalmol 2014;28(3):220-225.

5- Hussainy S Al, Dodson PM and Gibson JM Pain response and follow-up of patients undergoing panretinal laser

photocoagulation with reduced exposure times. Eye (2008) 22, 96–99

6- Muqit MM, Marcellino GR, Henson DB et al.

Single-Session vs Multiple-Session Pattern Scanning Laser Panretinal Photocoagulation in Proliferative Diabetic.

Arch ophthalmol, 2010, 128 : 525-533

7- Yoon Hyung Kwon, Dong Kyu Lee, Oh Woong Kwon

The short-term efficacy of subthreshold micropulse yellow (577 nm) laser photocoagulation for diabetic macular edema. Korean J Ophthalmol 2014;28(5):379-385

8- Scholz P, Ersoy L, Boon CJF, Fauser S

Subthreshold Micropulse Laser (577 nm). Treatment in Chronic Central Serous

Chorioretinopathy.

Ophthalmologica 2015 DOI: 10.1159/000439600

www.quantel-medical.com

Manufacturer

Quantel Medical 1 Rue du Bois Joli - CS40015 63808 Cournon d'Auvergne - FRANCE Tel.: +33 (0)4 73 745 745 Email: contact@quantelmedical.fr

ISO 9001: 2015 - ISO 13485: 2016

Headquarters

Lumibird Medical 1 Rue du Bois Joli – CS40015 63808 Cournon d'Auvergne - FRANCE Tel.: +33 (0)4 73 745 745

