Ultrasound of a post vitrectomy bleed produces an echogenic and homogeneous image that is different than one obtained from a vitreous hemorrhage where blood settles within vitreous structures. A cross section of the residual vitreous skirt is seen as an echoluent area at the bottom of image. The interface between blood cells and aqueous in a vitrectomized eye is much smaller than the interface between cells and vitreous gel. Therefore, a probe with both high sensitivity and high resolution is required to obtain a diagnostically useful image in these cases. While scanning the different meridians, hyaloid traction was identified at 3:00, starting at the vitreous base and extending to the mid periphery. It is attached to the eye wall by a small hyperreflective structure revealing a preretinal new vessel that is a potential cause of recurrent hemorrhage (Figure 1).

Many PVDs are partial. Secondary Posterior Vitreous Detachments may also produce a recurrent hemorrhage. Neovascularization was seen adjacent to the disk but without any adhesion or traction of the hyaloid membrane (Figure 2).
The right eye shows an intraocular hemorrhage. The hyaloid is only partially detached (Figure 3).

![Figure 3]

Conclusion:

High sensitivity and resolution images produced by this new 10 MHz probe allows visualization of diffuse fresh hemorrhage. One can greatly appreciate the lack of noise and artifacts, permitting a more precise differential diagnoses of echoes related to vitreous hemorrhage and inflammatory cells.